๋ฐ์ด ์์ฐ์์ e์ธ ์ง์ํจ์
x = np.arange(-2, 4, 0.1) y = np.exp(x) plt.plot(x, y, label='e^x') plt.legend() plt.show()

์์ฐ๋ก๊ทธ ํจ์
x = np.arange(0.1, 4, 0.1) y = np.log(x) plt.plot(x, y, label='y = log x') plt.legend() plt.show()

์ง์ ํจ์ curve fitting
from scipy.optimize import curve_fit import matplotlib.pyplot as plt # a*e^(-b*x)+c def func1(x, a, b, c): return a * np.exp(-b * x) + c def func2(x, a, b, c): return a * pow(2.7182, -b * x) + c def custom_curve_fit(xdata, ydata): popt1, pcov1 = curve_fit(func1, xdata, ydata) # r^2 ๊ณ์ฐ residuals1 = ydata - func1(xdata, *popt1) ss_res1 = np.sum(residuals1**2) ss_tot = np.sum((ydata-np.mean(ydata))**2) r1 = 1 - (ss_res1 / ss_tot) return popt1, r1 xdata = np.linspace(0, 4, 50) y = func1(xdata, 2.5, 1.3, 0.5) np.random.seed(1729) y_noise = 0.2 * np.random.normal(size=xdata.size) ydata = y + y_noise plt.plot(xdata, ydata, 'b-', label='data') p1, r1 = custom_curve_fit(xdata, ydata) print(f'R^2 : {r1}') plt.plot(xdata, func1(xdata, *p1), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(p1)) plt.plot(xdata, func2(xdata, 2.5, 1.3, 0.5), 'g-', label='2.5*2.7182^(-b*x)+0.5') plt.legend() plt.show()

2์ฐจ ๋คํญ์
from scipy.optimize import curve_fit import matplotlib.pyplot as plt # ax^2+bx+c def func(x, a, b, c): return a*pow(x,2)+b*x+c xdata = np.arange(1000, 11000, 1000) ydata = [1, 1.7, 2.4, 3, 3.5, 4, 4.4, 4.9, 5.3, 5.7] plt.plot(xdata, ydata, '*-') popt, pcov = curve_fit(func, xdata, ydata) plt.plot(xdata, func(xdata, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) plt.legend() plt.show() popt

Least squares - ์ต์์ ๊ณฑ๋ฒ
https://ko.wikipedia.org/wiki/%EC%B5%9C%EC%86%8C%EC%A0%9C%EA%B3%B1%EB%B2%95
์ต์์ ๊ณฑ๋ฒ - ์ํค๋ฐฑ๊ณผ, ์ฐ๋ฆฌ ๋ชจ๋์ ๋ฐฑ๊ณผ์ฌ์
์ํค๋ฐฑ๊ณผ, ์ฐ๋ฆฌ ๋ชจ๋์ ๋ฐฑ๊ณผ์ฌ์ . ๋ถ์ ์ ๋ค์ ๊ธฐ๋ฐ์ผ๋ก ํธ๋ฅธ ์ ์ 2์ฐจ ๋ฐฉ์ ์ ๊ทผ์ฌํด๋ฅผ ๊ตฌํ๋ค. ์ต์์ ๊ณฑ๋ฒ, ๋๋ ์ต์์์น๋ฒ, ์ต์์ ๊ณฑ๊ทผ์ฌ๋ฒ, ์ต์์์น๊ทผ์ฌ๋ฒ(method of least squares, least squares app
ko.wikipedia.org
๋น์ ํ ์ต์์ ๊ณฑ๋ฒ
https://en.wikipedia.org/wiki/Non-linear_least_squares
Non-linear least squares - Wikipedia
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m โฅ n). It is used in some forms of nonlinear regression. The basis of the method is to approxim
en.wikipedia.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
scipy.optimize.curve_fit โ SciPy v1.5.2 Reference Guide
Function with signature jac(x, ...) which computes the Jacobian matrix of the model function with respect to parameters as a dense array_like structure. It will be scaled according to provided sigma. If None (default), the Jacobian will be estimated numeri
docs.scipy.org
https://github.com/scipy/scipy/blob/v1.5.2/scipy/optimize/minpack.py#L532-L834
scipy/scipy
Scipy library main repository. Contribute to scipy/scipy development by creating an account on GitHub.
github.com
Non-linear ์ต์์ ๊ณฑ๋ฒ
def curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-np.inf, np.inf), method=None, jac=None, **kwargs): """ Use non-linear least squares to fit a function, f, to data. Assumes ``ydata = f(xdata, *params) + eps``. Parameters ---------- f : callable The model function, f(x, ...). It must take the independent variable as the first argument and the parameters to fit as separate remaining arguments. xdata : array_like or object The independent variable where the data is measured. Should usually be an M-length sequence or an (k,M)-shaped array for functions with k predictors, but can actually be any object. ydata : array_like The dependent data, a length M array - nominally ``f(xdata, ...)``. p0 : array_like, optional Initial guess for the parameters (length N). If None, then the initial values will all be 1 (if the number of parameters for the function can be determined using introspection, otherwise a ValueError is raised). sigma : None or M-length sequence or MxM array, optional Determines the uncertainty in `ydata`. If we define residuals as ``r = ydata - f(xdata, *popt)``, then the interpretation of `sigma` depends on its number of dimensions: - A 1-D `sigma` should contain values of standard deviations of errors in `ydata`. In this case, the optimized function is ``chisq = sum((r / sigma) ** 2)``. - A 2-D `sigma` should contain the covariance matrix of errors in `ydata`. In this case, the optimized function is ``chisq = r.T @ inv(sigma) @ r``. .. versionadded:: 0.19 None (default) is equivalent of 1-D `sigma` filled with ones. absolute_sigma : bool, optional If True, `sigma` is used in an absolute sense and the estimated parameter covariance `pcov` reflects these absolute values. If False (default), only the relative magnitudes of the `sigma` values matter. The returned parameter covariance matrix `pcov` is based on scaling `sigma` by a constant factor. This constant is set by demanding that the reduced `chisq` for the optimal parameters `popt` when using the *scaled* `sigma` equals unity. In other words, `sigma` is scaled to match the sample variance of the residuals after the fit. Default is False. Mathematically, ``pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)`` check_finite : bool, optional If True, check that the input arrays do not contain nans of infs, and raise a ValueError if they do. Setting this parameter to False may silently produce nonsensical results if the input arrays do contain nans. Default is True. bounds : 2-tuple of array_like, optional Lower and upper bounds on parameters. Defaults to no bounds. Each element of the tuple must be either an array with the length equal to the number of parameters, or a scalar (in which case the bound is taken to be the same for all parameters). Use ``np.inf`` with an appropriate sign to disable bounds on all or some parameters. .. versionadded:: 0.17 method : {'lm', 'trf', 'dogbox'}, optional Method to use for optimization. See `least_squares` for more details. Default is 'lm' for unconstrained problems and 'trf' if `bounds` are provided. The method 'lm' won't work when the number of observations is less than the number of variables, use 'trf' or 'dogbox' in this case. .. versionadded:: 0.17 jac : callable, string or None, optional Function with signature ``jac(x, ...)`` which computes the Jacobian matrix of the model function with respect to parameters as a dense array_like structure. It will be scaled according to provided `sigma`. If None (default), the Jacobian will be estimated numerically. String keywords for 'trf' and 'dogbox' methods can be used to select a finite difference scheme, see `least_squares`. .. versionadded:: 0.18 kwargs Keyword arguments passed to `leastsq` for ``method='lm'`` or `least_squares` otherwise. Returns ------- popt : array Optimal values for the parameters so that the sum of the squared residuals of ``f(xdata, *popt) - ydata`` is minimized. pcov : 2-D array The estimated covariance of popt. The diagonals provide the variance of the parameter estimate. To compute one standard deviation errors on the parameters use ``perr = np.sqrt(np.diag(pcov))``. How the `sigma` parameter affects the estimated covariance depends on `absolute_sigma` argument, as described above. If the Jacobian matrix at the solution doesn't have a full rank, then 'lm' method returns a matrix filled with ``np.inf``, on the other hand 'trf' and 'dogbox' methods use Moore-Penrose pseudoinverse to compute the covariance matrix. Raises ------ ValueError if either `ydata` or `xdata` contain NaNs, or if incompatible options are used. RuntimeError if the least-squares minimization fails. OptimizeWarning if covariance of the parameters can not be estimated. See Also -------- least_squares : Minimize the sum of squares of nonlinear functions. scipy.stats.linregress : Calculate a linear least squares regression for two sets of measurements. Notes ----- With ``method='lm'``, the algorithm uses the Levenberg-Marquardt algorithm through `leastsq`. Note that this algorithm can only deal with unconstrained problems. Box constraints can be handled by methods 'trf' and 'dogbox'. Refer to the docstring of `least_squares` for more information. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.optimize import curve_fit >>> def func(x, a, b, c): ... return a * np.exp(-b * x) + c Define the data to be fit with some noise: >>> xdata = np.linspace(0, 4, 50) >>> y = func(xdata, 2.5, 1.3, 0.5) >>> np.random.seed(1729) >>> y_noise = 0.2 * np.random.normal(size=xdata.size) >>> ydata = y + y_noise >>> plt.plot(xdata, ydata, 'b-', label='data') Fit for the parameters a, b, c of the function `func`: >>> popt, pcov = curve_fit(func, xdata, ydata) >>> popt array([ 2.55423706, 1.35190947, 0.47450618]) >>> plt.plot(xdata, func(xdata, *popt), 'r-', ... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) Constrain the optimization to the region of ``0 <= a <= 3``, ``0 <= b <= 1`` and ``0 <= c <= 0.5``: >>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5])) >>> popt array([ 2.43708906, 1. , 0.35015434]) >>> plt.plot(xdata, func(xdata, *popt), 'g--', ... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) >>> plt.xlabel('x') >>> plt.ylabel('y') >>> plt.legend() >>> plt.show() """ if p0 is None: # determine number of parameters by inspecting the function sig = _getfullargspec(f) args = sig.args if len(args) < 2: raise ValueError("Unable to determine number of fit parameters.") n = len(args) - 1 else: p0 = np.atleast_1d(p0) n = p0.size lb, ub = prepare_bounds(bounds, n) if p0 is None: p0 = _initialize_feasible(lb, ub) bounded_problem = np.any((lb > -np.inf) | (ub < np.inf)) if method is None: if bounded_problem: method = 'trf' else: method = 'lm' if method == 'lm' and bounded_problem: raise ValueError("Method 'lm' only works for unconstrained problems. " "Use 'trf' or 'dogbox' instead.") # optimization may produce garbage for float32 inputs, cast them to float64 # NaNs cannot be handled if check_finite: ydata = np.asarray_chkfinite(ydata, float) else: ydata = np.asarray(ydata, float) if isinstance(xdata, (list, tuple, np.ndarray)): # `xdata` is passed straight to the user-defined `f`, so allow # non-array_like `xdata`. if check_finite: xdata = np.asarray_chkfinite(xdata, float) else: xdata = np.asarray(xdata, float) if ydata.size == 0: raise ValueError("`ydata` must not be empty!") # Determine type of sigma if sigma is not None: sigma = np.asarray(sigma) # if 1-D, sigma are errors, define transform = 1/sigma if sigma.shape == (ydata.size, ): transform = 1.0 / sigma # if 2-D, sigma is the covariance matrix, # define transform = L such that L L^T = C elif sigma.shape == (ydata.size, ydata.size): try: # scipy.linalg.cholesky requires lower=True to return L L^T = A transform = cholesky(sigma, lower=True) except LinAlgError: raise ValueError("`sigma` must be positive definite.") else: raise ValueError("`sigma` has incorrect shape.") else: transform = None func = _wrap_func(f, xdata, ydata, transform) if callable(jac): jac = _wrap_jac(jac, xdata, transform) elif jac is None and method != 'lm': jac = '2-point' if 'args' in kwargs: # The specification for the model function `f` does not support # additional arguments. Refer to the `curve_fit` docstring for # acceptable call signatures of `f`. raise ValueError("'args' is not a supported keyword argument.") if method == 'lm': # Remove full_output from kwargs, otherwise we're passing it in twice. return_full = kwargs.pop('full_output', False) res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs) popt, pcov, infodict, errmsg, ier = res ysize = len(infodict['fvec']) cost = np.sum(infodict['fvec'] ** 2) if ier not in [1, 2, 3, 4]: raise RuntimeError("Optimal parameters not found: " + errmsg) else: # Rename maxfev (leastsq) to max_nfev (least_squares), if specified. if 'max_nfev' not in kwargs: kwargs['max_nfev'] = kwargs.pop('maxfev', None) res = least_squares(func, p0, jac=jac, bounds=bounds, method=method, **kwargs) if not res.success: raise RuntimeError("Optimal parameters not found: " + res.message) ysize = len(res.fun) cost = 2 * res.cost # res.cost is half sum of squares! popt = res.x # Do Moore-Penrose inverse discarding zero singular values. _, s, VT = svd(res.jac, full_matrices=False) threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s**2, VT) return_full = False warn_cov = False if pcov is None: # indeterminate covariance pcov = zeros((len(popt), len(popt)), dtype=float) pcov.fill(inf) warn_cov = True elif not absolute_sigma: if ysize > p0.size: s_sq = cost / (ysize - p0.size) pcov = pcov * s_sq else: pcov.fill(inf) warn_cov = True if warn_cov: warnings.warn('Covariance of the parameters could not be estimated', category=OptimizeWarning) if return_full: return popt, pcov, infodict, errmsg, ier else: return popt, pcov
import numpy as np import pandas as pd from scipy.optimize import curve_fit def custom_curve_fit(xdata, ydata): ''' xdata = np.append(xdata, 0) ydata = np.append(ydata, 0) xdata = np.append(xdata, 5) ydata = np.append(ydata, 8)''' def func0(x, a, b): return a*pow(b, x) #a * np.exp(b * x) # a*x+b # a*np.log(x)+b def func1(x, a, b): return a*pow(x,b) def func2(x, a, b): return a*pow(x,3)+b def func3(x, a, b, c, d): return a*pow(x,3)+b*pow(x,2)+c*x+d def func4(x, a, b): return a*pow(x,3)+b*pow(x,2) popt0, pcov0 = curve_fit(func0, xdata, ydata, maxfev=2000) popt1, pcov1 = curve_fit(func1, xdata, ydata, maxfev=2000) popt2, pcov2 = curve_fit(func2, xdata, ydata, maxfev=2000) popt3, pcov3 = curve_fit(func3, xdata, ydata, maxfev=2000) popt4, pcov4 = curve_fit(func4, xdata, ydata, maxfev=2000) residuals0 = ydata - func0(xdata, *popt0) residuals1 = ydata - func1(xdata, *popt1) residuals2 = ydata - func2(xdata, *popt2) residuals3 = ydata - func3(xdata, *popt3) residuals4 = ydata - func4(xdata, *popt4) ss_res0 = np.sum(residuals0**2) ss_res1 = np.sum(residuals1**2) ss_res2 = np.sum(residuals2**2) ss_res3 = np.sum(residuals3**2) ss_res4 = np.sum(residuals4**2) ss_tot = np.sum((ydata-np.mean(ydata))**2) r0 = 1 - (ss_res0 / ss_tot) r1 = 1 - (ss_res1 / ss_tot) r2 = 1 - (ss_res2 / ss_tot) r3 = 1 - (ss_res3 / ss_tot) r4 = 1 - (ss_res4 / ss_tot) return popt0, popt1, popt2, popt3, popt4, r0, r1, r2, r3, r4 file = 'input' df = pd.read_excel(f'{file}.xlsx') df2 = pd.DataFrame() p0, p1, p2, p3, p4, r0, r1, r2, r3, r4 = custom_curve_fit(df['x'], df['y']) df['y(ax^b)'] = p1[0]*pow(df['x'], p1[1]) df['y(dx3+cx2+bx+a)'] = p3[0]*pow(df['x'], 3) + p3[1]*pow(df['x'], 2) + p3[2]*df['x'] + p3[3] df2 = df2.append({'a(ax^b)': p1[0], 'b(ax^b)': p1[1], 'r2(ax^b)': r1, 'a(dx3+cx2+bx+a)': p3[0], 'b(dx3+cx2+bx+a)': p3[1], 'c(dx3+cx2+bx+a)': p3[2], 'd(dx3+cx2+bx+a)': p3[3], 'r2(dx3+cx2+bx+a)': r3, }, ignore_index=True) writer = pd.ExcelWriter(f'{file}_RESULT.xlsx', engine='xlsxwriter') df2.to_excel(writer, sheet_name = 'Sheet1') df.to_excel(writer, sheet_name = 'Sheet2') # Auto-adjust columns' width for column in df2: column_width = max(df2[column].astype(str).map(len).max(), len(column)) col_idx = df2.columns.get_loc(column) print(col_idx, column, column_width) writer.sheets['Sheet1'].set_column(col_idx, col_idx+1, column_width) for column in df: column_width = max(df[column].astype(str).map(len).max(), len(column)) col_idx = df.columns.get_loc(column) writer.sheets['Sheet2'].set_column(col_idx, col_idx+1, column_width) writer.save() os.popen(f'./{file}_RESULT.xlsx')
'Python > Basic' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
[Python] Pillow ์ด๋ฏธ์ง ์ฌ์ด์ฆ ํ์ธ (0) | 2022.08.06 |
---|---|
[Python] PDF ๊ด๋ จ ํจํค์ง ์ ๋ฆฌ (0) | 2022.08.05 |
[Python] ํ์ผ ๊ด๋ จ (0) | 2022.07.19 |
[Python] Excel, Word ๋ค๋ฃจ๊ธฐ (0) | 2021.07.26 |
[Python] XlsxWriter - Excel ๋ค๋ฃจ๊ธฐ (0) | 2021.07.26 |