๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ


๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ

(233)
Expo, Create React Native App create-react-native-app ํŒจํ‚ค์ง€๋ฅผ npm(node.js package manager)์„ ์ด์šฉํ•˜์—ฌ ์„ค์น˜ํ•˜์ž. RN์€ npm์„ ์ด์šฉํ•˜์—ฌ ๋””ํŽœ๋˜์‹œ๋ฅผ ๊ด€๋ฆฌํ•œ๋‹ค. npm install -g create-react-natvie-app ๋ญ๊ฐ€ ๋‹ค๋ฅธ๊ฑด์ง€ ๋ชจ๋ฅด๊ฒ ๋Š”๋ฐ, https://expo.io/learn : Get Started ์—์„œ๋Š” 1. Node.js ์„ค์น˜ 2. npm install expo-cli --global 3. expo init my-new-project cd my-new-project expo start 4. QR์ฝ”๋“œ๋กœ ํฐ์—์„œ ์—ด๊ธฐ 5. your-project/App.js๋กœ ์•ฑ ๋งŒ๋“ค๊ธฐ!
์ตœ๊ฐ•์˜ ์‹์‚ฌ https://blog.naver.com/hilove690/221444096941 ์ตœ๊ฐ•์˜์‹์‚ฌ (์ƒ์„ธ๋ฒ„์ „, ์™„์ „๋ฌด๊ฒฐ ์Œ์‹ ๋ฆฌ์ŠคํŠธ) 3๋ถ€/์ด4๋ถ€ ์ตœ๊ฐ•์˜ ์‹์‚ฌ - ๋ฐ์ด๋ธŒ ์•„์Šคํ”„๋ฆฌ์ตœ๊ฐ•์˜์‹์‚ฌ ๊ฐ„๋žต๋ณธ์€ ์—ฌ๊ธฐ: https://blog.naver.com/hilove690/221301862268... blog.naver.com
LAT ๊ณ„์‚ฐ LAT = [DEG] + [MIN]/60 * IF([NS]="S", -1, 1)
MDN MDN์—์„œ๋Š” ์ถœ๋ ฅ๊ฐ’์„ ๋ช…์‹œ์ ์œผ๋กœ ์ƒ์„ฑํ•˜์—ฌ x->y ๋งคํ•‘์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๋Œ€์‹  ๊ฐ ๋Œ€์ƒ์˜ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ํ•™์Šตํ•˜๊ณ  ์ถœ๋ ฅ์„ ์ƒ˜ํ”Œ๋งํ•œ๋‹ค. ๋ถ„ํฌ ์ž์ฒด๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์šฐ์‹œ์•ˆ(๊ฐ€์šฐ์Šค ํ˜ผํ•ฉ) ์œผ๋กœ ํ‘œ์‹œ๋œ๋‹ค. ๋ชจ๋“  ์ž…๋ ฅ x์— ๋Œ€ํ•ด distribution parameters๋ฅผ ํ•™์Šตํ•œ๋‹ค. mean, variance, mixing coefficient k : ๊ฐ€์šฐ์‹œ์•ˆ ์ˆ˜ l : ์ž…๋ ฅ ํ”ผ์ฒ˜ ์ˆ˜ (l + 2) k ์ถœ๋ ฅ๊ฐ’: the mixing coefficients์™€ component density parameters๋ฅผ ํ•™์Šตํ•œ๋‹ค. # In our toy example, we have single input feature l = 1 # Number of gaussians to represent the multimodal distribution..
[Keras] Noise Regularization https://machinelearningmastery.com/how-to-improve-deep-learning-model-robustness-by-adding-noise/ How to Improve Deep Learning Model Robustness by Adding Noise Adding noise to an underconstrained neural network model with a small training dataset can have a regularizing effect and reduce overfitting. Keras supports the addition of Gaussian noise via a separate layer called the GaussianNoise laye..
Repost https://wdprogrammer.tistory.com/29 [keras] ์ •ํ™•ํ•œ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ๊ฒ€์ฆ(validation) ๋ฐ์ดํ„ฐ ๋‚˜๋ˆ„๊ธฐ 2019-01-05-validation ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ๋•Œ, ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์™€ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋„ ํ›ˆ๋ จ์˜ ์ฒ™๋„๋ฅผ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ํ•™์Šต๋งŒ์„ ๋ฐ”ํƒ•์œผ๋กœ ๋ชจ๋ธ์˜ ์„ค์ •(Hyperparameter)๋ฅผ ํŠœ๋‹ํ•˜๊ฒŒ.. wdprogrammer.tistory.com https://github.com/gilbutITbook/006975/blob/master/3.6-predicting-house-prices.ipynb gilbutITbook/006975 ์ผ€๋ผ์Šค ์ฐฝ์‹œ์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹. Contribute to gilbutITbook/006975 devel..
ํ›ˆ๋ จ์…‹, ๊ฒ€์ฆ์…‹, ์‹œํ—˜์…‹ ํผ์˜ด: https://tykimos.github.io/2017/03/25/Dataset_and_Fit_Talk/ ๋ฐ์ดํ„ฐ์…‹ ์ด์•ผ๊ธฐ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋ ค๋ฉด ๋ฐ์ดํ„ฐ์…‹์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ํ’€๊ณ ์ž ํ•˜๋Š” ๋ฌธ์ œ ๋ฐ ๋งŒ๋“ค๊ณ ์ž ํ•˜๋Š” ๋ชจ๋ธ์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ์…‹ ์„ค๊ณ„๋„ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ์…‹์„ ์–ด๋–ป๊ฒŒ ๊ตฌ์„ฑํ•˜๊ณ  ๋ชจ๋ธ์„ ์–ด๋–ป๊ฒŒ ๊ฒ€์ฆํ•  ์ง€ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ํ›ˆ๋ จ์…‹, ๊ฒ€์ฆ์…‹, ์‹œํ—˜์…‹ ๋‹น์‹ ์ด ๊ณ ๋“ฑํ•™๊ต ๋‹ด์ž„์„ ์ƒ๋‹˜์ด๊ณ  ์ˆ˜๋Šฅ ๋ณผ ํ•™์ƒ์ด 3๋ช…์ด ์žˆ๋‹ค๊ณ  ๊ฐ€์ •์„ ํ•ด๋ด…์‹œ๋‹ค. ์ด ์„ธ ๋ช… ์ค‘ ๋ˆ„๊ฐ€ ์ˆ˜๋Šฅ์„ ๊ฐ€์žฅ ์ž˜ ๋ณผ์ง€ ์•Œ์•„ ๋งžํ˜€๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ๋‹น์‹ ์—๊ฒŒ๋Š” ๋ชจ์˜๊ณ ์‚ฌ 5ํšŒ๋ถ„๊ณผ ์ž‘๋…„ ์ˆ˜๋Šฅ ๋ฌธ์ œ 1ํšŒ๋ถ„์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋น„์œ ๋  tykimos.github.io https://book.coalastudy.com/data-science-lv1/week3/..
Validation, Test ๋ฐ์ดํ„ฐ์„ธํŠธ ๋น„๊ต Validation ๋ฐ์ดํ„ฐ์„ธํŠธ๋Š” ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์—ฌ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์— ์“ฐ์ผ ์ˆ˜ ์žˆ๋‹ค. (์ธต์˜ ์ˆ˜, ์ธต์˜ ์œ ๋‹› ์ˆ˜ ๋“ฑ) ๊ฒ€์ฆ ์„ธํŠธ์˜ ์„ฑ๋Šฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ์˜ ์„ค์ •์„ ํŠœ๋‹ํ•˜๋ฉด ๊ฒ€์ฆ ์„ธํŠธ๋กœ ๋ชจ๋ธ์„ ์ง์ ‘ ํ›ˆ๋ จํ•˜์ง€ ์•Š๋”๋ผ๋„ ๋น ๋ฅด๊ฒŒ ๊ฒ€์ฆ์„ธํŠธ์— ๊ณผ๋Œ€์ ํ•ฉ ๋  ์ˆ˜ ์žˆ๋‹ค. -> ํ•œ ๋ฒˆ ํŠœ๋‹ํ•˜๊ณ  ๋‚˜์„œ ๊ฒ€์ฆ์„ธํŠธ์— ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ€์ง€๊ณ  ๋‹ค์‹œ ๋ชจ๋ธ์„ ์กฐ์ •ํ•˜๋Š” ๊ณผ์ •์„ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐ˜๋ณตํ•˜๋ฉด ๊ฒ€์ฆ์„ธํŠธ์— ๊ด€ํ•œ ์ •๋ณด๋ฅผ ๋ชจ๋ธ์— ์•„์ฃผ ๋งŽ์ด ๋…ธ์ถœ์‹œํ‚ค๊ฒŒ ๋˜์–ด ๊ณผ๋Œ€์ ํ•ฉ ๋  ์ˆ˜ ์žˆ๋‹ค. Test ๋ฐ์ดํ„ฐ์„ธํŠธ๋Š” ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์ด์–ด์•ผ ํ•˜๋ฉฐ ๋ชจ๋ธ์€ ๊ฐ„์ ‘์ ์œผ๋กœ ์–ด๋– ํ•œ ์ •๋ณด๋„ ์ฃผ๋ฉด ์•ˆ๋จ -> ํ…Œ์ŠคํŠธ ์„ธํŠธ ์„ฑ๋Šฅ์— ๊ธฐ์ดˆํ•˜์—ฌ ํŠœ๋‹ํ•œ ๋ชจ๋ธ์˜ ๋ชจ๋“  ์„ค์ •์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์™œ๊ณก์‹œํ‚ฌ ๊ฒƒ์ด๋‹ค. * ๋ฐ์ดํ„ฐ๊ฐ€ ์ ์„ ๊ฒฝ์šฐ ์‚ฌ์šฉํ•˜๋ฉด ์ข‹์€ ๊ณ ๊ธ‰ ๊ธฐ๋ฒ• - ๋‹จ์ˆœ ํ™€๋“œ์•„์›ƒ ๊ฒ€์ฆ(ho..