๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ


๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ

(223)
[Python] matplotlib - plot ํฐํŠธ ํฌ๊ธฐ ๋ณ€๊ฒฝ import matplotlib.pyplot as plt SMALL_SIZE = 8 MEDIUM_SIZE = 10 BIGGER_SIZE = 12 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize o..
๋ฐ์ดํ„ฐ ๋กœ๋“œ read_pandas_dataframe Creates a new Dataflow based on the contents of a given pandas DataFrame. โ€‹ Parameters df pandas DataFrame to be parsed and cached at 'temp_folder'. โ€‹ temp_folder path to folder that 'df' contents will be written to. โ€‹ overwrite_ok If temp_folder exists, whether to allow its contents to be replaced. โ€‹ in_memory Whether to read the DataFrame from memory instead of persisting..
[Python] flask(์›น ํ”„๋ ˆ์ž„์›Œํฌ)๋กœ ์ดˆ๊ฐ„๋‹จ ์›น ํŽ˜์ด์ง€ ๋งŒ๋“ค๊ธฐ ์„ค์น˜ pip install flask hello_world.py from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return "Hello World!" if __name__ == "__main__": app.run() ์œ„์™€ ๊ฐ™์ด ์ž‘์„ฑํ•œ hello_world.py ์‹คํ–‰ ํ›„ 127.0.0.1:5000๋กœ ๋“ค์–ด๋ฉด Hello World! ๋ผ๊ณ  ๋œฌ๋‹ค :)
[Python] Python ๋ฒ„์ „ ํ™•์ธ python ๋ฒ„์ „ ํ™•์ธ python -V
[Python] pip ์—…๊ทธ๋ ˆ์ด๋“œ ๋ช…๋ น์–ด (Windows) cmd ์ฐฝ์—์„œ ์ž…๋ ฅ python -m pip install --upgrade pip
ใ…‡ใ……ใ…‡
[Machine Learning] Train data normalization Test ๋ฐ์ดํ„ฐ ์ •๊ทœํ™”๋Š” Train์˜ Mean, Std๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋‚˜? - ์ˆ˜์ฒœ๊ฐœ์˜ Data point๊ฐ€ ์žˆ๊ณ , Test data๊ฐ€ Train data๋ฅผ ์™„๋ฒฝํ•˜๊ฒŒ ๋Œ€ํ‘œํ•œ๋‹ค๋ฉด Test, Train ์–ด๋Š ๊ฒƒ์„ ์‚ฌ์šฉํ•ด๋„ ๋œ๋‹ค. (์ž…์ฆ ์–ด๋ ค์›€) https://www.researchgate.net/post/If_I_used_data_normalization_x-meanx_stdx_for_training_data_would_I_use_train_Mean_and_Standard_Deviation_to_normalize_test_data ๋ถˆ๋Ÿฌ์˜ค๋Š” ์ค‘์ž…๋‹ˆ๋‹ค...
Keras Tuner ์„ค์น˜ ํ•„์š”: Python 3.6 TensorFlow 2.0 Beta pip install git+https://github.com/keras-team/keras-tuner.git ๊ธฐ๋ณธ ์‚ฌํ•ญ random search๋ฅผ ์‚ฌ์šฉํ•ด์„œ a single-layer dense neural network ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์„ ํ•ด๋ณด์ž. ๋จผ์ €, model-building ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•œ๋‹ค. hp๋Š” hyperparameter๋ฅผ ์ƒ˜ํ”Œ๋ง ํ•  ์ˆ˜ ์žˆ๋Š” ์ธ์ˆ˜์ด๋‹ค. ex) hp.Range('units', min_value=32, max_value=512, step=32) (ํŠน์ • ๋ฒ”์œ„์˜ ์ •์ˆ˜) return์€ ์ปดํŒŒ์ผ๋œ model from tensorflow import keras from tensorflow.keras import laye..