๋ถ๋ฅ ์ ์ฒด๋ณด๊ธฐ (223) ์ธ๋ค์ผํ ๋ฆฌ์คํธํ [Python] matplotlib - plot ํฐํธ ํฌ๊ธฐ ๋ณ๊ฒฝ import matplotlib.pyplot as plt SMALL_SIZE = 8 MEDIUM_SIZE = 10 BIGGER_SIZE = 12 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize o.. ๋ฐ์ดํฐ ๋ก๋ read_pandas_dataframe Creates a new Dataflow based on the contents of a given pandas DataFrame. โ Parameters df pandas DataFrame to be parsed and cached at 'temp_folder'. โ temp_folder path to folder that 'df' contents will be written to. โ overwrite_ok If temp_folder exists, whether to allow its contents to be replaced. โ in_memory Whether to read the DataFrame from memory instead of persisting.. [Python] flask(์น ํ๋ ์์ํฌ)๋ก ์ด๊ฐ๋จ ์น ํ์ด์ง ๋ง๋ค๊ธฐ ์ค์น pip install flask hello_world.py from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return "Hello World!" if __name__ == "__main__": app.run() ์์ ๊ฐ์ด ์์ฑํ hello_world.py ์คํ ํ 127.0.0.1:5000๋ก ๋ค์ด๋ฉด Hello World! ๋ผ๊ณ ๋ฌ๋ค :) [Python] Python ๋ฒ์ ํ์ธ python ๋ฒ์ ํ์ธ python -V [Python] pip ์ ๊ทธ๋ ์ด๋ ๋ช ๋ น์ด (Windows) cmd ์ฐฝ์์ ์ ๋ ฅ python -m pip install --upgrade pip ใ ใ ใ [Machine Learning] Train data normalization Test ๋ฐ์ดํฐ ์ ๊ทํ๋ Train์ Mean, Std๋ฅผ ์ฌ์ฉํด์ผ ํ๋? - ์์ฒ๊ฐ์ Data point๊ฐ ์๊ณ , Test data๊ฐ Train data๋ฅผ ์๋ฒฝํ๊ฒ ๋ํํ๋ค๋ฉด Test, Train ์ด๋ ๊ฒ์ ์ฌ์ฉํด๋ ๋๋ค. (์ ์ฆ ์ด๋ ค์) https://www.researchgate.net/post/If_I_used_data_normalization_x-meanx_stdx_for_training_data_would_I_use_train_Mean_and_Standard_Deviation_to_normalize_test_data ๋ถ๋ฌ์ค๋ ์ค์ ๋๋ค... Keras Tuner ์ค์น ํ์: Python 3.6 TensorFlow 2.0 Beta pip install git+https://github.com/keras-team/keras-tuner.git ๊ธฐ๋ณธ ์ฌํญ random search๋ฅผ ์ฌ์ฉํด์ a single-layer dense neural network ํ์ดํผํ๋ผ๋ฏธํฐ ํ๋์ ํด๋ณด์. ๋จผ์ , model-building ํจ์๋ฅผ ์ ์ํ๋ค. hp๋ hyperparameter๋ฅผ ์ํ๋ง ํ ์ ์๋ ์ธ์์ด๋ค. ex) hp.Range('units', min_value=32, max_value=512, step=32) (ํน์ ๋ฒ์์ ์ ์) return์ ์ปดํ์ผ๋ model from tensorflow import keras from tensorflow.keras import laye.. ์ด์ 1 ยทยทยท 22 23 24 25 26 27 28 ๋ค์ ํฐ์คํ ๋ฆฌํด๋ฐ Developer๐ค๊ตฌ๋ ํ๊ธฐ